BABI

PENDAHULUAN

A. Latar Belakang

Perkembangan revolusi masyarakat sudah pada tahap *super-smart society* atau *Society* 5.0. Yang merupakan tatanan masyarakat yang berpusat pada manusia (*human-centered*) dan berbasis teknologi (*technology based*). Sejarah revolusi masyarakat, *Society* 5.0 didahului dengan era berburu (*Society* 1.0), pertanian (*Society* 2.0), industri (*Society* 3.0), dan teknologi informasi (*Society* 4.0). *Society* 5.0/Masyarakat 5.0 adalah suatu konsep masyarakat yang berpusat pada manusia (*human-centered*) dan berbasis teknologi (*technology based*) yang dikembangkan oleh Jepang. Konsep ini lahir sebagai pengembangan dari Revolusi Industri 4.0 yang dinilai berpotensi mendegradasi peran manusia digagas di Jepang pada tahun 2019. Konsep ini hadir dengan harapan menjawab masalah revolusi Industri 4.0 dan untuk mengintegrasikan dunia maya dan dunia nyata dengan bantuan teknologi seperti AI, robot, IoT dan lainnya dalam melayani kebutuhan manusia sehingga warga masyarakat dapat merasa nyaman dan menikmati hidup. (Suherman et al., 2020)

Sistem pakar merupakan pengembangan kecerdasan buatan yang menggabungkan pengetahuan dan penelusuran data untuk memecahkan masalah yang secara normal memerlukan keahlian manusia. Tujuan pengembangan sistem pakar sebenarnya bukan untuk menggantikan peran manusia, tetapi untuk mensubtitusikan pengetahuan manusia ke dalam bentuk sistem, sehingga dapat digunakan oleh banyak orang. (Putra et al., 2017)

Menurut WHO, angka kematian penyakit Asma di Indonesia pada tahun 2014 mencapai 24.773 orang (1,77 persen dari total kematian penduduk), yang menempatkan Indonesia di urutan 19 dunia. Menurut WHO dalam (Aufa et al., 2023) WHO dan *Global Asthma Network* (GAN) yang merupakan organisasi Asma dunia, memprediksi pada tahun 2025 akan terjadi kenaikan populasi Asma sebanyak 400 juta dan 250 ribu

kematian. Kementerian Kesehatan mencatat bahwa Asma adalah salah satu penyakit yang paling banyak diidap masyarakat Indonesia hingga akhir tahun 2020, dengan jumlah penderita 4,5% (lebih 12 juta) dari total penduduk Indonesia. Tahun 2019 WHO menyebutkan jumlah penderita Asma 235 juta, 1–18% dari populasi dunia.

Menurut *Global Health Metrics* dalam (Rosfadilla & Tarigan, 2022) Asma bertanggung jawab atas 21,6 juta DALYs (*Disability-Adjusted Life Year*) pada tahun 2019, yang merupakan 20,8% dari total DALYs dari penyakit pernapasan kronis. Angka kematian akibat Asma paling tinggi di negara-negara dengan SDI (*Socio-Demographic Index*) rendah dan menengah, sedangkan prevalensi tertinggi di negara-negara dengan SDI tinggi. Menurut Profil Kesehatan 2017 Asma termasuk 15 penyakit terbesar penyakit rawat inap di rumah sakit Cirebon dengan jumlah 188 pada kelompok usia 5-14 tahun, dan 186 pada kelompok usia 15-44 tahun. (Dinas Kesehatan Kabupaten Cirebon, 2017)

Berdasarkan studi pendahuluan diatas penulis tertarik untuk mengambil judul Aplikasi Deteksi Dini Resiko Asma Menggunakan Metode Forward Chaining Berbasis Website karena sesuai dengan Standar Profesi Perekam Medis dan Informasi Kesehatan tercantum dalam No. HK.01.07/Menkes/312/2020 yang mengatakan bahwa salah kewenangan dari ahli madya rekam medis adalah merancang struktur isi dan standar data kesehatan, untuk pengelolaan informasi kesehatan serta sesuai dengan misi Poltekkes Kemenkes Tasikmalaya tahun 2023 yaitu berperan aktif dalam mewujudkan masyarakat sehat yang mandiri dan berkeadilan melalui kegiatan pengabdian kepada masyarakat yang diharapkan mampu membantu masyarakat mendeteksi dini mengetahui lebih awal penyakit Asma. Aplikasi ini nantinya akan digunakan oleh pasien di UPTD Puskesmas Plumbon, Kecamatan Plumbon, Kabupaten Cirebon.

B. Rumusan Masalah

Berdasarkan latar belakang diatas, rumusan masalah dalam penelitian ini adalah bagaimana merancang dan membangun suatu sistem pakar untuk diagnosa resiko Asma menggunakan metode *Forward Chaining*?

C. Tujuan Penelitian

1. Tujuan Umum

Penelitian ini bertujuan untuk merancang Aplikasi Sistem Deteksi Dini Resiko Asma menggunakan metode *Forward Chaining* berbasis *Website*.

2. Tujuan Khusus

- a. Mengetahui proses assessment data dari sistem deteksi dini resiko Asma.
- Mendapatkan akuisisi pengetahuan pembuatan sistem yang digunaknan dalam pengembangan sistem deteksi dini resiko Asma.
- c. Mengetahui desain antarmuka sistem deteksi dini resiko Asma.
- d. Mengetahui keberhasilan sistem dengan menguji apakah sistem yang dibangun telah sesuai dengan tujuan pengembangan sistem deteksi dini resiko Asma.
- e. Mendapatkan panduan mengoperasikan sistem deteksi dini resiko Asma berbasis *website*.

D. Manfaat Penelitian

1. Manfaat Teoritis

Hasil penelitian ini diharapkan dapat menjadi bahan belajar dan pengetahuan mengenai sistem deteksi dini dan klasifikasi penyakit kasus pernapasan. Juga sebagai referensi dalam kelanajutan penelitian dengan topik yang lebih mendalam dan relevan.

2. Manfaat Praktisi

a. Bagi Pengguna

Dapat digunakan untuk mendeteksi dini resiko Asma.

b. Bagi peneliti

Dapat menambah wawasan tentang sistem deteksi dini resiko Asma

E. Keaslian Penelitian

Berdasarkan pengetahuan peneliti, bahwasannya penelitian dengan judul "Aplikasi Deteksi Dini Resiko Asma Menggunakan Metode *Forward Chaining* Berbasis *Website*" belum pernah dilakukan, tetapi penulis menemukan beberapa penelitian serupa yaitu:

Tabel 1. 1 Penelitian Terdahulu

No.	Peneliti	Judul Penelitian	Metode Penelitian	Variabel Peneltian	Letak Perbedaan
1.	Ruth Octovani	Penerapan	Certainty	Penyakit	Berfokus pada
	Christia	Metode	Factor	Asma	pendeteksian
	Wardianti	Certainty			dini Asma
		Factor Untuk			kronik, dan
		Mendiagnosis			Asma alergi
		Penyakit			menggunakan
		Asma Pada			metode forward
		Pasien			chaining
2.	Niki Ratama	Analisa Dan	Certainty	Penyakit	Berfokus pada
		Perbandingan	Factor	Asma	pendeteksian
		Sistem			dini Asma
		Aplikasi			kronik, dan
		Diagnosa			Asma alergi
		Penyakit			menggunakan
		Asma Dengan			metode forward
		Algoritma			chaining
		Certainty			
		Factor Dan			
		Algoritma			
		Decision Tree			
		Berbasis			
		Android			
3.	Ardi Wijaya	Sistem Pakar	Algoritme	Penyakit	Berfokus pada
	dan Rozali	Diagnosis	Genetik	Asma	pendeteksian
	Toyib	Penyakit			dini Asma
		Asma Dengan			kronik, dan
		Menggunakan			Asma alergi
		Algoritme			menggunakan
		Genetik			metode forward
					chaining
4.	Winke Nasrani	Sistem Pakar	Teorema Bayes	Penyakit	Berfokus pada
	Sitepu dan Jijon	Diagnosa		Asma	pendeteksian

No.	Peneliti	Judul Penelitian	Metode Penelitian	Variabel Peneltian	Letak Perbedaan
	Raphita Sagala	Penyakit Asma Dengan Menggunakan Metode Teorema Bayes			dini Asma kronik, dan Asma alergi menggunakan metode forward chaining
5.	Syaifudin Alkatiri	Sistem Pendukung Keputusan Untuk Diagnosa Level Penyakit Asma Berbasis Web Menggunakan Metode Teorema Naive Bayes	Teorema Naive Bayes	Penyakit Asma	Berfokus pada pendeteksian dini Asma kronik, dan Asma alergi menggunakan metode forward chaining
6.	Rintana Arnie dan Muhammad Maurits	Sistem Pakar Untuk Mendiagnosa Penyakit Asma Berbasis Forward Chaining	Forward Chaining	Penyakit Asma	Berfokus pada pendeteksian dini Asma kronik, dan Asma alergi menggunakan metode forward chaining
7.	W Zarman, D Yuliawardhani	Rancang- Bangun Aplikasi Pengenalan Penyakit Berbasis Android Menggunakan Metode Naive Bayes	Naive Bayes	Klasifikasi Penyakit	Berfokus pada pendeteksian dini Asma kronik, dan Asma alergi menggunakan metode forward chaining
8.	Ahmadu Kaju Karo, Yufis Azhar, Maskur	Sistem Pakar Diagnosa Penyakit Paru–Paru Menggunakan Metode Case Base Reasoning Pada Telegram Bot	Case Base Reasoning (Karo et al., 2020)	Penyakit Paru-Paru	Berfokus pada pendeteksian dini Asma kronik, dan Asma alergi menggunakan metode forward chaining