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Abstract: Background and Objectives: Taiwan is among the nations with the highest rates of Type 2
Diabetes Mellitus (T2DM) and Hypertension (HTN). As more cases are reported each year, there
is a rise in hospital admissions for people seeking medical attention. This creates a burden on
hospitals and affects the overall management and administration of the hospitals. Hence, this study
aimed to develop a machine learning (ML) model to predict the Length of Stay (LoS) and mortality
among T2DM and HTN inpatients. Materials and Methods: Using Taiwan’s National Health Insurance
Research Database (NHIRD), this cohort study consisted of 58,618 patients, where 25,868 had T2DM,
32,750 had HTN, and 6419 had both T2DM and HTN. We analyzed the data with different machine
learning models for the prediction of LoS and mortality. The evaluation was done by plotting
descriptive statistical graphs, feature importance, precision-recall curve, accuracy plots, and AUC.
The training and testing data were set at a ratio of 8:2 before applying ML algorithms. Results: XGBoost
showed the best performance in predicting LoS (R2 0.633; RMSE 0.386; MAE 0.123), and RF resulted
in a slightly lower performance (R2 0.591; RMSE 0.401; MAE 0.027). Logistic Regression (LoR)
performed the best in predicting mortality (CV Score 0.9779; Test Score 0.9728; Precision 0.9432; Recall
0.9786; AUC 0.97 and AUPR 0.93), closely followed by Ridge Classifier (CV Score 0.9736; Test Score
0.9692; Precision 0.9312; Recall 0.9463; AUC 0.94 and AUPR 0.89). Conclusions: We developed a robust
prediction model for LoS and mortality of T2DM and HTN inpatients. Linear Regression showed
the best performance for LoS, and Logistic Regression performed the best in predicting mortality.
The results showed that ML algorithms can not only help healthcare professionals in data-driven
decision-making but can also facilitate early intervention and resource planning.

Keywords: predictive modeling; external validation; length of stay; mortality; type 2 diabetes;
hypertension; machine learning

1. Introduction

Non-Communicable Diseases (NCDs), such as Type 2 Diabetes Mellitus (T2DM) and
Hypertension (HTN), are a major public health problem and a leading cause of mortality
worldwide. They pose great economic threats and burdens due to their treatment cost
and complications [1]. Mainly triggered by obesity, fatty food, physical inactivity, and a
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sedentary lifestyle, T2DM is one of the most common NCDs [2]. The number of cases and
prevalence of diabetes have continued to increase over the last few decades, as approxi-
mately 422 million people have diabetes worldwide, with the majority living in low and
middle-income countries [3]. Each year, diabetes is directly responsible for 1.6 million
deaths, and an estimated 193 million people are diabetic but are unaware of it [4]. T2DM
and obesity are the leading factors for the global prevalence of Hypertension (HTN). HTN
is one of the silent killer NCDs because sometimes, people with HTN do not manifest signs
and symptoms [5]. It is a major risk factor for cardiovascular, brain, kidney, and other
diseases. The prevalence of HTN increases with age, as an estimated 1.2 billion adults aged
30–79 have HTN worldwide, with a significant ratio in low and middle-income countries,
and approximately 46% of people are unaware of having this condition [6].

In the literature, various studies have been conducted to assess the treatment/outcomes
of T2DM and HTN patients. Hospitalized patients, mostly with hypertensive emergencies
or urgency, who then sporadically exhibit acute HTN and who are deemed worthy of
clinical attention, may also have chronic HTN [7]. Cases of patients with HTN are common
among diabetes, with prevalence depending on the type and duration of diabetes, age, sex,
race/ethnicity, BMI, history of glycemic control, and presence of kidney disease, among
other factors [8]. HTN is also a major cause of morbidity and mortality for individuals
with diabetes. More than 50% of patients with HTN also have DM [9]. T2DM increases
the risks of heart failure and mortality in patients with HTN. Given their common risk
factors, HTN and T2DM often coexist. In general, HTN is prevalent among 70% of T2DM
patients, whereas patients with HTN are 2.5 times more likely to develop T2DM as a
primary comorbidity [10–12].

The Length of Stay (LoS) is the amount of time a patient stays in the hospital after
being admitted due to a medical condition and is regarded as one of the most important
metrics for hospital administration and management [13]. Several studies have shown that
LoS is associated with other clinical outcomes; for example, if the patient remains in the
ICU for more than three days, he is more likely to die [14]. However, Lingsma et al. [15]
indicated that there is a direct correlation between LoS and mortality during the index
admission, and Sud et al. [16] showed that prolonged LoS is associated with higher rates of
mortality and readmission.

Taiwan implemented the National Health Insurance (NHI) system in 1995, and it
has a high coverage and utilization rate. However, the healthcare system in Taiwan is
facing immense challenges due to rapid population aging [17]. Approximately 9996 people
in Taiwan died from DM in 2019, with 2736 of the deaths being recorded to be among
people 85 years of age and above [18]. The number of deaths due to HTN in 2019 was
6255, and the majority of the cases had an age of 85 years or more [18]. Taiwan is among
the nations with the highest rates of Type 2 Diabetes Mellitus (T2DM) and Hypertension
(HTN). As more cases are reported each year, there is a rise in hospital admissions for
people seeking medical attention. This creates a burden on the hospitals and affects the
overall management and administration of the hospitals. Accurate identification of patients
enables early planning of treatment and provision of more intensive care to accelerate their
recovery, intervention, and improvement of clinical outcomes, thereby reducing LoS as
well as improving the planning and resource management [19].

Artificial Intelligence (AI) is an innovative field of computer science that has trans-
formed the practice of medicine and reshaped the delivery of healthcare. With the latest
surge of AI in healthcare, one of its powerful domains, Machine Learning (ML), has ex-
tensively been used for improving the accuracy, prediction, and quality of work in this
domain [20]. An important application of ML algorithms used in hospitals is the precise pre-
diction of mortality and LoS, which in turn can classify patients with different risk factors
of outcome [21]. Accurate LoS prediction of inpatients is not only important in improving
patient care but is also critical for resource management and planning in hospitals [13].
Therefore, the objective of this study was to utilize ML algorithms in order to predict the
LoS and mortality of patients diagnosed with T2DM and HTN using the data from Taiwan’s
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National Health Insurance Research Database (NHIRD). The National Health Insurance
Research Database (NHIRD) of Taiwan is a unique and large national database that has
been widely used as an excellent resource for scientific research in healthcare, along with
its other benefits and purposes [22,23].

2. Materials and Methods
2.1. Data Source

Taiwan began its healthcare reforms in the 1980s, following two decades of rapid
economic growth. The National Health Insurance (NHI) Act was passed on 19 July 1994,
and the NHI model was adopted. The Bureau of NHI developed NHIRD to support data-
driven decision and policy making [24]. NHIRD is a cohort of registry and claims data of all
23 million residents of Taiwan [19]. NHIRD data were made available to researchers for the
period of 2000–2013. We have taken the four years’ latest releases, i.e., data from 2010–2013,
in our study. We queried NHIRD for participant user files to conduct this retrospective
cohort study. Data included sex, age, birthdates, discharge status, treatment, status change
indicator, death, hospital cost, LoS, etc.

Our study population consisted of 65,037 patients. However, there were patients with
T2DM (n = 25,868), HTN (n = 32,750), and both T2DM and HTN (n = 6419). In general, 70%
of patients with T2DM had HTN, and patients with previous HTN were 2.5 times more
likely to develop T2DM [3].

2.2. Inclusion and Exclusion Criteria

We included patients with T2DM or HTN.
The inclusion criteria were as follows. (i) Patients diagnosed with T2DM using the

following International Classification of Diseases-9 (ICD-9) Revision codes: (25000, 25002,
25010, 25012, 25020, 25022, 25030, 25032, 25040, 25042, 25050, 25052, 25060, 25062, 25070,
25072, 25080, 25082, 25090, 25092) or (ii) Patients diagnosed with HTN using the following
ICD-9 Revision codes: (3482, 36504, 4010, 4011, 4019, 40501, 40509, 40511, 40519, 40591,
40599, 4160, 45930, 45931, 45932, 45933, 45939, 5723, 64200, 64201, 64202, 64203, 64204,
64210, 64211, 64212, 64213, 64214, 64220, 64221, 64222, 64223, 64224, 64230, 64231, 64232,
64233, 64234, 64270, 64271, 64272, 64273, 64274, 64290, 64291, 64292, 64293, 64294).

Patients with both T2DM and HTN were identified by querying the above two datasets.
Finally, we selected patients with either T2DM or HTN as primary comorbidities for
predicting LoS and mortality. We also excluded patients with duplicate records, patients
who died on discharge, those with missing/incomplete data, patients who died on the
day of admission, and deaths due to injuries or suicide. Demographic characteristics of
all patients with T2DM, HTN, and both HTN and T2DM has been explained in the results.
However, we continued to develop the prediction model by previously excluding patients
who had both T2DM and HTN (see Figure 1).

2.3. Predictors and Outcomes

The outcome of interest in our study included mortality and LoS. The outcome pre-
dicted using the model for mortality was a categorical variable with the values 1 = “alive”
or 0 = “death”, and LoS was predicted as a continuous variable. All the selected predictors
were based on data obtained before discharge. A total of 67 predictor variables consisting
of hospital cost, vital signs and symptoms, comorbidities, and demographic characteristics
were extracted from NHIRD.

The covariates of interest in our study included Gender, Age, Discharge status, HTN,
T2DM, Number of comorbidities, Hospital cost, LoS, Days spent in acute bed, Days spent
in chronic bed, Transfer code, Case classification, Pneumonia, Urinary tract infection (UTI),
Cellulitis, Congestive heart failure, Inguinal hernia, Acute pancreatitis, Aneurysm, Hear-
ing, LoS, Hypertrophy, Acute pyelonephritis, Cerebral artery hemorrhage, Intracerebral
hemorrhage, Congestive heart failure, Calculus of urethra, Obstructive chronic bronchitis,
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Displacement of the lumbar vertebral disc, and Malignant neoplasm of liver. All were
analyzed using EDA plots and descriptive statistics.
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Figure 1. Flowchart illustrating patient selection process.

2.4. Handling Missing Values

As with most clinical data, NHIRD data contained a significant number of missing
values. Initially, all the variables that were not selected for inclusion in the study were
removed. Thereafter, we examined the proportion of missing values in each of the candi-
date variables. The overall missingness in each of the features was less than 10%, so we
ultimately removed all the missing values from our study.

2.5. Features Selection

In our study, we selected predictors based on literature review, expert opinion, and
univariate and bivariate analysis [25]. First, we identified features through expert opinions
and a literature review. Thereafter, we conducted univariate and bivariate analyses on the
feature set using chi-square. Subsequently, 24 features were selected for the LoS prediction,
and 27 features were considered for the mortality prediction (see Figure 2).

2.6. Managing Class Imbalance

Accuracy is one of the most commonly used metrics to evaluate ML models. This
measure is usually not sufficient when the data are highly imbalanced (as in the case
of our study, the variance between survivors and the mortality was considerably high).
However, the nature of our prediction problem required a high rate of correct detection of
the mortality of patients. The most commonly used methods in many types of research to
solve the class imbalance problem are oversampling the minority class [26], under-sampling
the majority class [27], or a combination of both [24]. However, under-sampling may cause
the loss of vital information by removing significant patterns, and similarly, over-sampling
may cause overfitting and introduce additional computational tasks. To solve this problem,
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Chawla et al. [28] introduced a Synthetic Minority Over-sampling Technique (SMOTE)
by generating a synthetic example rather than replacement with replication. Our study
used a combination of oversampling by SMOTE and under-sampling by Random Under
Sampler to address the class imbalance, and this combination gave us very good results in
predicting mortality.
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2.7. Predictive Model Development and Evaluation

Once the data were preprocessed, it was split into train and test datasets, and pre-
diction algorithms were applied. We tested and evaluated various ML algorithms before
fine-tuning the model hyperparameters. For the classification problem, we tested with a
Decision Tree Classifier, Random Forest Classifier, Logistic Regression, AdaBoost Classifier,
Bagging Classifier, Gradient Boosting Classifier, XGBoost Classifier, Support Vector Ma-
chines, K-Neighbors Classifier, and Naïve Bayes. After evaluation, we shortlisted a set of
algorithms for hyperparameter tuning, namely Logistic Regression (LoR), Ridge Classifier
(RC), Gradient Boosting Classifier (GBC), Bagging Classifier (BC), K-Neighbors Classifier
(KNN), Random Forest Classifier (RFC), and Support Vector Machine (SVM) to predict
mortality. For the regression problem, we used Linear Regression (LR), Support Vector
Machine (SVM), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM),
and Random Forest (RF) to predict LoS based on the patient characteristics described in
predictors and outcome section. Other than predicting the response from a set of predictors,
another common important step in data-driven modeling is to identify which predictors
are most relevant to the prediction task and the contribution of each feature in predicting
the outcome. A grid search was set up for each combination of hyperparameters, and the
best combination was selected by comparing scores from nested and non-nested 10-fold
cross-validation procedures. After the selection of optimal tuning parameters, these were
then used to train and evaluate the algorithms through nested 10-fold cross-validation.
Ten percent of the training portion of each cross-validation was set aside for selecting the
optimal classification threshold and the rest for final evaluation. The Receiver Operat-
ing Characteristics (ROC), Area Under the Curve (AUC), F-beta, Precision, Recall, Cross
Validation score, Accuracy score, Balanced Accuracy score, Test score, and Area Under
Precision-Recall (AUPR) were used to evaluate the models. Both mortality and LoS datasets
were partitioned into training and testing sets in an 8:2 ratio. The training set was used to
run the model, and the testing set was used to determine the performance of the model
after learning.
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2.8. Length of Stay (LoS)

We used several models to predict LoS, including SVM, LR, GBM, XGBoost, and RF.
The parameters chosen using the grid search for each of the algorithms were GBM (cost: 0,
mstop: 37, NU 0.68, num_sample: 34), RF model (ntree: 210, mtry: 8, node size: 49), LR
model (alpha: 0.19, S: 11.6, and n lambda: 19), XGBoost model (eta: 0.04, gamma: 3.9, max
depth: 10, and subsample: 0.65), and SVM model (C: 9.2). The rest of the parameters in
each model were set to default.

2.9. Mortality

The models for predicting mortality included LoR, RC, SVM, RFC, KNN, BC, and GBC.
The parameters chosen using the grid search for each of the algorithms were LoR (C: 1000,
solver: newton-cg), RC (alpha: 0.1), RFC (max_features: sqrt, n_estimators: 100), KNN
(metric: manhattan, weights: distance), BC (n_estimators: 10), and GBC (learning_rate:
0.001, max_depth: 3, n_estimators: 10, subsample: 0.5). The rest of the parameters in each
model were set to default.

2.10. Document Software and Libraries

We used string R version 4.2.1 and Python 3.7 for the development of the LoS predic-
tion model. The mortality prediction model and cross-validation analysis were performed
by using Python v3.8.8, Anaconda v1.7.2, Jupyter core v4.7.1, Jupyter-notebook v6.3.0, Qt
console v5.0.3, Ipython v7.22.0, and ipykernel v5.3.4. The libraries used in the R package
were MASS, Tidyverse, Mlr, XGBoost, kernlab and random forest. The libraries used
in Python were SKLearn, CRAN, LoR Library, TensorFlow, XGBoost, Numpy, pandas,
Matplotlib, seaborn, imblearn, and collections.

3. Results
3.1. Patient Characteristics

A total of 65,037 patients were descriptively analyzed, as shown in Table 1. For the
predictive analysis, we excluded the patients having both T2DM and HTN and considered
the cohort with a total of 58,618 patients that included the patients with either T2DM and
HTN only. The mean age of the cohort was 75.12 ± 13.65 years. Over half of the included
patients were male (51.16%), and half of them were between the age of 58 and 80 (50.26%).
Patients with only HTN (55.87%) had a higher proportion than patients with only T2DM
(44.13%). The average LoS for patients with only T2DM (8.46 days) was higher than those
for patients with only HTN (6.56 days). Patients with T2DM had a higher mortality rate
(2.26%) than those with HTN (0.91%). The demographic characteristics of overall patients
are shown in Table 1.

Table 1. Demographic characteristics of the patients.

Characteristics
Patients with

T2DM
n = 25,868

Patients with
HTN

n = 32,750

Patients
Having Both

n = 6419

Total Patients
(T2DM +

HTN + Both)
n = 65,037

Total Patients Used
for Prediction Model

(T2DM or HTN)
N = 58,618

Statistical
Significance

Sex
0.136Male 13,138 (50.79) 16,849 (51.45) 3070 (47.83) 33,057 (50.83) 29,987 (51.16)

Female 12,730 (49.21) 15,901 (48.55) 3349 (52.17) 31,980 (49.17) 28,631 (48.84)

Age (years)
(mean ± SD) 75.05 ± 13.41 75.19 ± 13.84 75.49 ± 11.89 75.16 ± 13.49 75.12 ± 13.65

0.808
<35 94 (0.36) 150 (0.46) 8 (0.12) 252 (0.39) 244 (0.42)

35–57 2408 (9.31) 3236 (9.89) 417 (6.50) 6061 (9.32) 5644 (9.63)
58–80 13,307 (51.44) 16,157 (49.33) 3564 (55.52) 33,028 (50.78) 29,464 (50.26)
>80 10.059 (38.89) 13,207 (40.33) 2430 (37.86) 25,696 (39.51) 13,217 (22.55)
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Table 1. Cont.

Characteristics
Patients with

T2DM
n = 25,868

Patients with
HTN

n = 32,750

Patients
Having Both

n = 6419

Total Patients
(T2DM +

HTN + Both)
n = 65,037

Total Patients Used
for Prediction Model

(T2DM or HTN)
N = 58,618

Statistical
Significance

Discharge
status

0.001 *

Treatment and
discharge 1142 (4.41) 1953 (5.96) 325 (5.06) 3420 (5.26) 3095 (5.28)

Continue to be
hospitalized 0 0 0 0 0

Change to
outpatient
treatment

22,798 (88.13) 29,422 (89.84) 5859 (91.28) 58,079 (89.30) 22,827 (38.94)

Death 585 (2.26) 298 (0.91) 30 (0.47) 913 (1.40) 883 (1.51)
Automatic
discharge 648 (2.51) 584 (1.78) 125 (1.95) 1357 (2.09) 1232 (2.10)

Transfer 318 (1.23) 268 (0.82) 56 (0.87) 642 (0.99) 586 (0.999)
Change of

identity 0 0 0 0 0

Absconding 3 (0.01) 2 (0.006) 0 5 (0.01) 5 (0.009)
Suicide 1 (0.003) 0 0 1 (0.001) 1 (0.002)
Other 373 (1.44) 223 (0.68) 24 (0.37) 620 (0.95) 596 (1.02)

No. of
comorbidities

-0 123 (0.48) 258 (0.79) 0 (0) 381 (0.59) 381 (0.65)
1 2425 (9.37) 6858 (20.94) 0 (0) 9283 (14.27) 9283 (15.84)
2 11,269 (43.56) 15,757 (48.11) 134 (2.09) 27,160 (41.76) 27,026 (46.11)
≥3 12,051 (46.59) 9877 (30.16) 6285 (97.91) 28,213 (43.38) 21,928 (37.41)

Hospital Cost

0.141
Average

Cost(min–max)
13,208

(0–1,212,764)
10,449

(0–768,724)
10,120

(0–768,724)
11,514

(0–1,212,764)
11666

(0–1,212,764)

Median (IQR) 7962
(4470–13,397)

6852
(3947–11,107)

6895
(4119–11,084)

7228
(4298–11,972)

7228
(4298–12,185)

LoS

0.031 *
Average LoS
(min–max)

8.46
(0–6059)

6.56
(0–3087)

6.60
(0–1887)

7.32
(0–6059)

6.60
(0–1887)

Median (IQR) 5.00
(3.00–8.00)

4.00
(2.00–7.00)

4.00
(3.00–7.00)

5.00
(3.00–8.00)

4.00
(3.00–7.00)

Note—Length of stay (LoS), interquartile range (IQR), maximum (max), minimum (min). Continuous values were
recorded as median (1st–3rd quantile), and categorical values were recorded as absolute numbers and percentages;
* The difference is significant for p value < 0.05.

3.2. Features Selection

The following 24 variables were selected for LoS prediction: Gender, Closed fracture
of unspecified part of neck of femur, Age, Age categorical, Pneumonia, Diabetes, Hyperten-
sion, Cerebral artery occlusion, UTI, Cellulitis, Intracerebral hemorrhage, Congestive heart
failure, Hearing loss, Acute pyelonephritis, Acute pancreatitis, Aneurysm, Osteoarthrosis,
Calculus of ureter, Inguinal hernia, Obstructive chronic bronchitis, Hypertrophy, Malignant
neoplasm of the liver, and Displacement of a lumbar intervertebral disc.

The following 27 variables were selected for mortality prediction: Days in acute bed,
Days in chronic bed, Transfer code, Case classification, Gender, LOS, Age, Age group,
Pneumonia, Diabetes, Hypertension, Cerebral artery occlusion, UTI, Cellulitis, Intracere-
bral hemorrhage, Congestive heart failure, Hearing loss, Acute pyelonephritis, Acute
pancreatitis, Aneurysm, Osteoarthrosis, Calculus of ureter, Inguinal hernia, Obstructive
chronic bronchitis, Hypertrophy, Malignant neoplasm of the liver, Displacement of a lumbar
intervertebral disc, Closed fracture of unspecified part of neck or femur.
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3.3. Comorbidities of T2DM and HTN

The most common comorbidities among patients with T2DM and HTN from our
data are shown in Table 2. Metabolic disorders were the highest of the most common
comorbidities of inpatients with T2DM and HTN.

Table 2. Most common comorbidities with T2DM and HTN.

Common Comorbidities

1. Metabolic disorders
2. Coronary artery disease
3. Myocardial infarction
4. Stroke
5. Congestive heart failure
6. Aneurysm
7. Pneumonia
8. Urinary tract infection
9. Inguinal hernia
10. Intracerebral hemorrhage

3.4. Length of Stay (LoS)

We evaluated various metrics for LoS prediction. The performance of all the models is
presented in Table 3. The best-performing model was XGBoost with R2 of 0.633, followed
by RMSE 0.386, MAE 0.123, and MSE 0.312.

Table 3. LoS prediction performance of various models.

Model MSE RMSE MAE R2

SVM 0.393 0.510 0.121 0.486
LR 0.570 0.755 0.065 0.172
GBM 0.584 0.755 0.004 0.397
XGBoost 0.312 0.386 0.123 0.633
RF 0.261 0.401 0.027 0.591

3.5. Feature Importance

A list of the top 15 features’ importance plot in LoS prediction is shown in Figure 3.
The figure shows that age is the most important feature in LoS prediction using chi-square.
The other most important features influencing the LoS prediction were gender and diabetes
as co-morbidity.

3.6. Mortality

Table 4 indicates the mortality prediction performance. The best results were deter-
mined by using RF with an AUROC of 0.996.

Table 4. Mortality prediction performance of various models for classification model.

Classifier Accuracy Score Balanced Accuracy Score Test Score Precision Recall AUC AUPR

LoR 0.9779 0.9719 0.9728 0.9432 0.9786 0.97 0.93
RC 0.9736 0.9592 0.9692 0.9312 0.9463 0.94 0.89

SVM 0.7899 0.7562 0.7332 0.7599 0.6524 0.88 0.89

Note: Models which were not included in the above tables were either overfit models or less accurate in predicting
LoS and mortality. This can be further understood in Table 5.

3.7. Feature Importance

The top 15 features’ importance scores in mortality prediction are shown in Figure 4.
We selected all the features to predict mortality. The figure shows that the displacement of
a lumbar intervertebral disc was the most important feature in mortality prediction using
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Random Forest Classifier. This comorbidity could be the major factor affecting mortality.
The other most important features influencing mortality prediction were cerebral artery
occlusion and age.
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Table 5. Excluded models based on overfitting or accuracy.

Model Name Precision Recall Train Accuracy Test Accuracy F1 Score AUC

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.000000

Random Forest 1.00 1.00 1.00 1.00 1.00 0.999827

Logistic Regression 0.94 0.98 0.97 0.97 0.96 0.971884

Ada Boost 1.00 1.00 1.00 1.00 1.00 1.000000

Bagging 1.00 1.00 1.00 1.00 1.00 1.000000

Gradient Boosting 1.00 1.00 1.00 1.00 1.00 1.000000

XGB 1.00 1.00 1.00 1.00 1.00 1.000000

SVC 0.82 0.49 0.77 0.77 0.61 0.710974

K-Neighbors 0.85 0.95 0.95 0.92 0.90 0.926795

Gaussian 1.00 0.98 0.99 0.99 0.99 0.992494

3.8. The Accuracy and LoS Plots

Figures 5 and 6 show the accuracy and LoS plot for mortality prediction by using a
neural network model. We developed a neural network to produce the accuracy and LoS
plots on a training dataset. We obtained both accuracy and LoS plot values to evaluate
the performance of the classification of subjects on each iteration. However, accuracy is a
parameter that may present any bias in the data. Therefore, to confirm that the classification
of subjects was statistically significant, we also estimate other parameter metrics. The LoS
plot in Figure 5 shows that the model is relatively good since the dataset is unbalanced;
however, the model needs to learn more.
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3.9. The AUC and Precision-Recall Curves

The Figures 7–12 represent the AUC and Precision-recall curves for the different
models used for prediction of LoS and mortality.

3.10. Calibration

The Figures 13–16 shows the calibration of different models used for prediction of LoS
and mortality.
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4. Cross–Validation

The results from nested and non-nested cross-validation on the training dataset are
compared in the figures below (see Figures 17–21). We conducted five trials and compared
the nested and non-nested cross-validation scores as well as the average difference in scores
from each experiment. The x-axis and y-axis represented the individual trial # (# depicts
number) and score, respectively. This was then applied to all the algorithms. We observed
that the average difference between trials was noticeably small, i.e., the difference between
nested and non-nested cross-validation scores was not much.
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5. Discussion

Earlier, we conducted a similar study using several machine learning techniques to
predict LoS and mortality for patients diagnosed with T2DM and HTN in Indonesia [29].
Our previous study had the same objectives as the current one, but it was conducted using
an Indonesian insurance claim-based dataset called Indonesia Case-Based Groups (INA-
CBGs) from a state-owned type B regional public hospital in Tasikmalaya, the Dr. Soekardjo
Regional Public Hospital (RSUD Dr. Soekardjo), with a sample size of 4376 patients. Our
current study was conducted using Taiwan’s NHIRD data using a greater sample size of
65,037 patients. The advantage of the current study is the NHIRD’s data, which are made
up of multiple hospitals and healthcare service clinics, and it is the best representation of
the national population as it covers more than 99% of the resident population of Taiwan.
In comparison to our previous study results, where LR and GBM models best predicted
LoS and MLP best predicted the mortality, the current study also showed that XGBoost
had the best performance in predicting the patients’ LoS, along with RF, which had similar
performance, while LoR performed the best in predicting mortality, closely followed by
Ridge Classifier. The ML models in both of these two studies corroborate a good prediction
of LoS and mortality among T2DM and HTN patients and hence, prove their utility in
medical decision-making, patient safety, and hospital resource management.

In addition to our previous study, there is an abundance of other studies in the literature
that utilize ML models for the prediction of diseases. For example, two of the studies used
ML approaches for the prediction of LoS or mortality in diabetic patients [30,31], but neither
of these studies predicted both LoS and mortality. Compared to that, in our study, LoS
and mortality were predicted in order to enhance healthcare quality. The findings from
our study revealed that the majority of the patients diagnosed with T2DM and HTN were
male. Our findings differed from another study done in Taiwan that showed that women
were more associated with HTN [30]. Our results showed that the majority of T2DM and
HTN patients fall in the age group between 58 and 80, with the youngest patient being
35 years old. A population-based cross-sectional survey also found that the majority of the
population aged 60 years and above were diagnosed with HTN in Taiwan [32]. Another
study forecasted that the number of cases of diabetes in people aged ≥65 years will increase
from 9.2 million in 2014 to 21 million in 2030 [33]. Although an increasing number of
individuals with T1DM were old aged [34], this discussion of pathophysiology concerns
T2DM, the most common incident and prevalent type in older age groups overwhelmingly,
as older adults are at high risk for the development of T2DM due to the combined effects
of increasing insulin resistance and impaired pancreatic islet function with aging.

Our study revealed that the discharge status of a large number of patients with HTN
and T2DM was at the end of transfer in outpatient treatment. Comorbidity was also one of
the factors affecting the outcome of a patient’s medical condition. Our findings revealed
that the majority of patients with T2DM have at least three or more comorbidities, while
patients with HTN have at least two comorbidities. The most common comorbidities in our
study included metabolic disorders, coronary artery disease, myocardial infarction, stroke,
and congestive heart failure. Another study also indicated that ischemic stroke is one of
the major vascular complications of diabetes mellitus [35]. Atherosclerotic cardiovascular
disease, including coronary heart disease, cerebrovascular disease, and peripheral arterial
disease, is the major cause of death and disability in patients with T2DM [36]. Furthermore,
T2DM is associated with an increased risk of multiple coexisting medical conditions in older
adults, such as cardiovascular and microvascular diseases [37,38]. A group of conditions
termed geriatric syndromes also occurs at higher frequency in older adults with T2DM and
may affect self-care abilities and health outcomes, including quality of life [39].

Our current findings (see Table 1) indicated that the inpatient cost of patients with
T2DM exceeds patients with HTN. The findings are consistent with a study by Mutsa P.
Mutowo, who also showed that there was a higher median cost and interquartile range
(IQR) for DM patients compared with HTN patients [40]. In a study done in Taiwan, the
risk of hospitalization and healthcare cost associated with diabetes complication severity
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index in Taiwan’s NHIRD showed that inpatient costs constituted a large part of the
total medical costs of DM and its complications [41]. In addition, it was found that the
greater the number and severity level of T2DM complications, the higher risk of mortality
and hospitalizations [42]. Furthermore, previous estimates of the costs associated with
T2DM and its related problems in Taiwan have been based on (The Adapted Diabetes
Complications Severity Index) DCSI scores rather than individual complications. The
average inpatient LoS for T2DM patients was eight days; for HTN, it was approximately
one week. Our results differ from a study done in Japan, where the mean LoS of DM
patients ranged from 10.9 days to 15.1 days, depending on the patient’s age [43].

Evaluation metrics are an integral aspect of ML, as they are used as indicators to assess
the performance of ML models. The most commonly used metrics are accuracy and error
rate [24]; however, these metrics are not the best measures to use if you have data that
are highly imbalanced, as the overall accuracy will be biased toward the majority class
regardless of the minority class, which will consequently lead to poor performance.

From the literature, the majority of researchers have used oversampling since this
method is capable of balancing class distributions without removing potentially critical
majority examples [44]. One of the most common errors that most people make is applying
oversampling to the entire original data, conducting cross-validation, and finally evaluating
the model [45]. This error usually leads to building biased models and producing over-
optimistic error estimates. One of the strengths of our study is that we performed a
combination of oversampling (SMOTE) and under-sampling methods. This procedure was
applied during nested and non-nested cross-validation, the dataset was first divided into
k stratified partitions, and only the training set was oversampled. In this procedure, the
observations included in the test set are never oversampled or seen by the model during
the training stage, thus allowing a proper evaluation of the model’s capability to generalize.
The top feature predictor is the displacement of a lumbar intervertebral disc in patients,
which ultimately results in higher LoS and mortality. Several studies have been conducted
in this area; for example, Sakellaridis et al. proved that patients operated on for lumbar disk
disease have a statistically significant increased incidence of diabetes mellitus compared to
similar patients operated on for other reasons [46].

6. Conclusions

In this study, we used ML algorithms to predict the LoS and mortality among T2DM
and HTN patients. The results showed that the XGBoost was the best model for LoS, and
LoR provided good results in mortality prediction. The low R2 score for LoS algorithms
is a concern for practical use; we have taken LoS as a feature for mortality prediction and
obtained good balanced accuracy. Therefore, we recommend that this model could be
a possible prediction tool for medical decision-making. An accurate forecast of hospital
stay and mortality enables early planning and treatment to improve patient’s clinical
outcomes. It can also help with better resource allocation and availability of hospital
beds. Our results lay the foundation for future work in developing rapid and robust
classification and regression algorithms that can leverage the minimal amount of available
data. Moreover, the combination of oversampling and under-sampling can be applied to
the unbalanced dataset.
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Abbreviations

Full Form Abbreviation
Linear Regression LR
Logistic Regression LoR
Cross Validation CV
Area Under Curve AUC
Area Under Precision-Recall AUPR
Gradient Boosting Machine GBM
Hypertension HTN
Length of Stay LoS
Machine Learning ML
Mean Absolute Error MAE
National Health Insurance NHI
National Health Insurance Research Database NHIRD
Random Forest RF
Root Mean Square Error RMSE
Receiver Operating Characteristics ROC
Support Vector Machine SVM
Type 2 Diabetes Mellitus T2DM
Extreme Gradient Boosting XGBoost
Exploratory Data Analysis EDA
Interquartile Range IQR
K-Neighbors Classifier KNN
Bagging Classifier BC
Gradient Boosting Classifier GBC
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